# Introduction to Corrugated Boxes 

LASZLO HORVATH, PH.D., CPLP

APRIL 23, 2020

## Design Steps for Stacking Strength...




## History of Corrugated Boards

- 1871 Albert Jones patented the first idea of a fluted paper
- 1874 Oliver Long suggested the creation of the single face board
- Late 1870, Machinery was developed to make corrugated board
- 1890 Another liner was added which resulted the first single wall corrugated board



## Corrugated Board Basics

- Most common medium is the $26 \mathrm{lbs} / 1000$ sq./ft.
- Basis weight grade specified board is characterized by weight and Mullen burst strength.

| Corrugating Medium Grades <br> (Ibs. /1000ft²) |
| :---: |
| 23 |
| 26 (most common) |
| 30 |
| 33 |
| 36 |
| 40 |


| Linerboard Grades (lbs. /1000ft²) |  |
| :---: | :---: |
| Basis Weight <br> Grades | Burst Strength <br> $($ Psi) |
| 26 | 70 |
| 33 | 85 |
| 38 | 92 |
| 42 | 100 |
| 69 | 135 |
| 90 | 160 |

## $\Gamma$

## Corrugated Board Basics

- Corrugated Board Types



## Double wall board

Triple wall board

- Corrugated Flute Types

'B' flute ~


```
'E' flute
```



```
'F' flute
ん~.
```


## Corrugated Board Basics

| Characteristics | A-flute | C-flute | B-flute | E-flute |
| :--- | :--- | :--- | :--- | :--- |
| Stack Strength | Best | Good | Fair | Poor |
| Printing | Poor | Fair | Good | Best |
| Die Cutting | Poor | Fair | Good | Best |
| Puncture | Good | Best | Fair | Poor |
| Storage Space | Most | Fair | Good | Least |
| Score/Bend | Poor | Fair | Good | Best |
| Cushioning | Best | Good | Fair | Poor |
| Flat Crush | Poor | Fair | Good | Good |

## $\Gamma$

## Corrugated Board Basics



- Double wall corrugated
- Provides extra strength to the box
- Allows the utilization of the advantages of multiple board types
- BC or AB-flute board:
- B-flute side prints better
- A or C-flute side strengthens


## Corrugated Board Basics

- The Corrugated Board Grade identifies the liner and medium combination.
- Outside liner - Medium(Flute type)- Inside liner
- Example
- 42-26C-42
- 56-33C-56
- 33-26B-33-26C-33
- Board grade identifies specific performance attributes of combined board



## Corrugated Board Mechanical Properties

- Burst Strength test (TAPPI 810)
- Measure the resistance of the corrugated board against rupture
- Measures the strength of the liners
" Edge crush test (TAPPI T811)
- Measures the strength in the flute direction
- Used to determine box stacking strength


## Design Steps for Stacking Strength...



## Corrugated Box-Sizes

- Common footprint was developed to create standard footprint in the retail sector
- Most popular: $600 \mathrm{~mm} \times 400 \mathrm{~mm}$
- Fit 5 boxes on a 1,200mmx1,000mm pallet
- Fractions:
- $300 \mathrm{~mm} \times 400 \mathrm{~mm}$
- $300 \mathrm{~mm} \times 200 \mathrm{~mm}$
- Etc.



## Corrugated Shipper - Styles

- FEFCO Corrugated Box Standard
- Styles:
- 01 - commercial rolls and sheets
- 02 - slotted- type boxes
- 03 - telescope- type boxes
- 04 - folder- type boxes and trays
- 05 - slide- type boxes

- 06 - rigid- type boxes
- 07 - ready- glued cases
- 09 - interior fitments



## $\Gamma$

## Corrugated Shipper - Styles



0201 Regular Slotted Container (RSC)


06 Bliss Style


0200 Half Slotted Container (HSC)


0711 Pre-glued Auto Bottom with RSC Top Flaps


0427 Roll End Tray with locking Cover

## How Corrugated Folds:

CROSS SECTION VIEW


125-250\#B-FLUTE


275-350\#C FLUTE


TERMINOLOGY


125-250\#C FLUTE


200-350\#BC FLUTE D.W.


125-200\#E FLUTE


275-350\#B FLUTE


| Maximum <br> Weight of <br> Box and <br> Contents <br> (lbs.) | Maximum <br> Outside <br> Dimensions, <br> (Length + <br> Width + <br> Depth) <br> (in.) | Minimum <br> Bursting Test <br> (Ibs. per sq in.) | Minimum Edge <br> Crush Test <br> (lbs. per sq in.) |
| :---: | :---: | :---: | :---: |
|  | Single Wall |  |  |
| 20 | 40 | 125 | 23 |
| 35 | 50 | 150 | 26 |
| 50 | 60 | 175 | 29 |
| 65 | 75 | 200 | 32 |
| 80 | 85 | 250 | 40 |
| 95 | 95 | 275 | 44 |
| 120 | 105 | 350 | 55 |
| 80 | 85 | Double Wall |  |
| 100 | 95 | 200 | 42 |
| 120 | 105 | 275 | 48 |
| 140 | 110 | 350 | 51 |
| 160 | 115 | 400 | 61 |
| 180 | 120 | 500 | 71 |

## Carrier Rules

- Truck: National Motor Freight Classification (NMFC)
- Rail: Uniform Freight Classification (UFC)
- Requires all box to comply with the requirements and have the Box Certificate.



## Basics of Mechanics of Corrugated Box

## Compression

- Definition: compression load resulting from static (warehouse stacking) or dynamic (clamping) load on a container or other package


Dynamic Lateral Compression


Static Vertical Compression

## Compression



## What is box compression strength?

Definition: Resistance of the box against compression forces applied perpendicularly to one or more of its faces.


## Box Compression Strength

- Box Compression Strength can be determined in two ways:
- Calculated using simplified McKee equation
- Measured using a short term box compression test



## Calculation of Box Compression Strength

- Box Compression Test (BCT):

$$
B C T=5.87 E C T \sqrt{P Z}
$$

- Where:

ECT - edge crush test (lbf/in)
P - box perimeter ( $2 \mathrm{~L}+2 \mathrm{~W}$ ) (in)
Z - caliper of combined corrugated board (in)

- Calculation is not applicable for all size and construction
- Mainly applies to RSC, HSC, or Telescopic Boxes



## Measurement of Box Compression Strength

## Short-Term Compression

- ASTM D642 - Compression Test for Shipping

Containers
(https://www.astm.org/Standards/D642.htm)

- Procedure
- Apply preload
- 50lb for single wall box
- 100 lb or 500 lb for double or triple wall box
- Recommended: 5 samples
- Record load and deflection (500lb @ 0.5" or 1000psi)
- Test until visual failure
- Failure of the box does not mean that the package failed


## Load-Deflection Curve



## Failure Modes Based on Aspect Ratio

- Always run the tests until visible failure occurs!



## Design Steps for Stacking Strength...



Material


Structure of
Single Unit


Structure of
Unit Load

## Determining Stacking Strength

- Stacking Strength- the amount of load that the box can safely hold.

Stacking Strength $=\frac{B C T}{\text { Safety Factor }}$

## Determining Stacking Strength

- Influencing factors:
- Product and package interaction
- Humidity
- Time
- Stacking misalignment
- Pallet overhang
- Transportation
- Fix safety factors or Retention

Analysis are used to account for these influencing factors


## Determining Stacking Strength

- Fixed safety factor: often used when the exact conditions that the package will be subiected to are not known.
- Range of safety factors can be found in ASTM D4169
- Depends on:
- Assurance level
- Package type
- Transportation mode
- Warehouse (static)
- Vehicle (dynamic)


## Determining Stacking Strength

- Assurance Levels:
- The levels are determined based on
- the product value,
- the desired level of anticipated damage that can be tolerated,
- the number of units shipped,
- the knowledge of the shipping environment, or
- other criteria
- ASTM Assurance Levels:
- Level 1 - Low probability, High intensity events (more severe than Level 2)
- Level 2 - (Commonly used)
- Level 3 - High probability, low intensity events (less severe than level 2)


## Example 1

## Safe Stacking Strength using Fixed Safety Factor method:

- Suppose you compression test a package in the lab under standard conditions and get a compression strength of 800 lbs . The package is made out of corrugated box without any rigid internal supports. The client want to use Assurance Level II.
- How much is the safe stacking strength of the package in a warehouse?


## Example 1

## Safe Stacking Height using Fixed Safety Factor Method:

- BCT= 800 lbs.
- Safe Stacking Strength=?

F Factors Assurance Level
Schedule Schedule

Shipping Unit Construction that may or may not have stress-bearing interior packaging using these materials, and where the product does not support any of the load. that has stress-bearing interior packaging with rigid inserts such as wood.
3. Containers constructed of materials other than corrugated, fiberboard, or plastic that are not temperature or humidity sensitive or where the product supports the load directly, for example, compression package.

Safe Stacking Strength $=800 / 4.5=177.78 \mathrm{lb}$

## Determining Stacking Strength

## Retention Analysis:

- Aimed at evaluating the compression strength retained by the package in the presence of the debilitating influences

Safety Factor: $\left(\frac{1}{H \cdot T \cdot P P}\right)$

H-Humidity
T-Storage Time
PP - Pallet Pattern


## $\Gamma$ <br> Determining Stacking Strength

## Retention Analysis:

- Humidity Factor (H)
- Humidity weakens the box because of absorption
- $85 \%$ Relative Humidity (RH) is common in warehouse across the U.S.


| RH | $0 \%$ | $25 \%$ | $50 \%$ | $55 \%$ | $60 \%$ | $65 \%$ | $70 \%$ | $75 \%$ | $80 \%$ | $85 \%$ | $90 \%$ | $95 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | $125 \%$ | $110 \%$ | $100 \%$ | $96 \%$ | $91 \%$ | $86 \%$ | $81 \%$ | $75 \%$ | $68 \%$ | $60 \%$ | $48 \%$ | $29 \%$ |



## $\Gamma$ <br> Determining Stacking Strength

## Retention Analysis:

- Storage Time Factor (T)
- Box weakened due to fatigue
- Common to store loads up to 90 days.



| Time | 0 | 1612 hrs | 1 | 2 | , | 3 | 4 | 5 | 103 | 306 | 609 | 90 | 180 days |  |  | 2 yrs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | 100\% | 877976 |  | 70 | 0 | 68 | 67 | 66 | 64 | 60 | 57 | 55 | 52 |  |  |  |

## $\Gamma$ <br> Determining Stacking Strength

## Retention Analysis:

- Pallet Pattern Factor (PP):
- Column stacked and aligned: 8\% loss
- Column stacked and misaligned: 10-15\% loss
" Interlocked: 40-60\% loss
- Overhang: 20-40\%
" Deck board gap: 10-25\% loss
- Excessive handling: 10-40\% loss


Column Stack


Interlocking Stack


## Example 2

Corrugated box strength: 800 lb

```
H (85%)= 0.60
T (90 days)= 0.55
PP (Column stacking, misaligned) =0.85
PP(Deckboard gap)= 0.75
```

Stacking Strength $=\frac{800 \mathrm{lb}}{\left(\frac{1}{0.60 \cdot 0.55 \cdot 0.85 \cdot 0.75}\right)}=\frac{800}{4.76}=168 \mathrm{lb}$

## Example 3

Corrugated box strength: 800 lb

```
H (85%)= 0.60
T (90 days)= 0.55
PP (interlock stacking) = 0.40
PP (Deckboard gap)= 0.75
PP (Overhang)= 0.80
```

62\% Reduction
Stacking Strength $=\frac{800 \mathrm{lb}}{\left(\frac{1}{0.60 \cdot 0.55 \cdot 0.40 \cdot 0.75 \cdot 0.80}\right)}=\frac{800}{12.6}=63.4 \mathrm{lb}$

## Box Analysis in PDS 6.1

## Container Type: Corrugated Box

Box Style: Regular Slotted Container (RSC) \#0201
Combined Board Type: Singlewall
Flute Profile: C-Flute
Caliper: 0.156 in.
ECT (lb/in): 32
Simplified Mckee Box Crush Capacity: 555 lbs.
Stacked 1 Unit Load High:
Max Uniform Box Loading: 60 lbs
Rigid Surface Safety Factor: 9.3

## Load Stabilizers

Wrap: Stretch Wrap


End View
40.00 $\qquad$

Box Outside Dimensions: $16.000 \times 12.000 \times 10.000$ in.
Weight per Box: 20.0 lbs .
Total Weight of Load: 720 lbs .
Weight of Complete Unit Load: 762 lbs .
Number of Boxes per Layer: 9
Number of Layers per Unit Load: 4, Column Stacked Number of Boxes per Unit Load: 36


# $\Gamma$ <br> THANK YOU FOR YOUR ATTENTION <br> LASZLO HORVATH <br> ASSOCIATE PROFESSOR <br> DIRECTOR, CENTER FOR PACKAGING AND UNIT LOAD DESIGN <br> APRIL 23, 2020 

